They Still Build New Wood Stave Silos

“Wood silos and barn restoration. New wood silos for sale.”

That’s part of an ad we spotted recently in the back of a farm publication. It was placed by a New York firm that continues to do a thriving business repairing old wood stave silos and building new ones.

“As far as I know, we’re the only company in the U.S. that still builds wood stave silos for farm feed storage,” says Mac Hyney, Hyney & Sons, Fort Plain, N.Y.

The company, founded in 1965, works mostly on-site in New England and Pennsylvania. They have three employees and use a self-propelled crane and a specially designed, hydraulic-operated platform to do the work.

Customers can choose from a number of roofing styles including gambrel, conical, standing seams, wooden shakes, and steel domes. “About half the silos we build are for working farmers, and the rest are for hobby farmers who just want to preserve an existing silo’s appearance,” says Hyney.

“Wood silos are rarely found any more except in New England, where they’re still quite numerous,” says Hyney. “Farms here are relatively small, and many have livestock. The biggest wood silo we build measures 20 by 50 ft.”

The cost to build a new wood silo is comparable to the cost for a conventional concrete stave silo, he says. But the feed that comes out of a wooden silo is often “sweeter.” “It’s the same concept used to preserve food in a pickle barrel,” says Hyney.

He says some of his customers have tried bunker silos or bagger-type systems but didn’t like them. “Another advantage is that the feed doesn’t freeze as much.”

“Sadly, a lot of people are buying up small farms and tearing the wood silos down. Others just let them rot.”

The company sometimes converts wood silos into homes. “We can make provisions in the hooping to allow for doors or windows at desired locations,” says Hyney. “We can furnish the interior floors and install a circular staircase either inside or outside, along with supporting angle irons.”

Contact: FARM SHOW Followup, Mac Hyney & Sons, 750 Elwood Road, Fort Plain, N.Y. (518) 585-1414; mmhyney@citilink.net; www.woodsilos.com.

New wood silo under construction.

“Metal posts rust the fastest right at ground level, where water stands and the acetic acid of livestock fecal material causes a chemical acceleration,” says Dickinson. “Underground posts rust, too, but not as fast as at ground level. My post-setting method adds years to the life of a metal pipe corral.”

He buys 10-ft. lengths of 4-in. dia. plastic sewer pipe for about $5 apiece and cuts them into 14-in. lengths. He digs holes 8 in. deep and sticks the 14-in. sections of sewer pipe into it. He fills the pipes with concrete almost to the top, then pushes the metal posts into the cement. Then he pours more cement into the sewer pipe until it’s flush with the top.

“Metal posts rust the fastest right at ground level, which keeps the post entirely out of any mud, rain water, urine or fecal matter.”

“Metal posts rust the fastest right at ground level, where water stands and the acetic acid of livestock fecal material causes a chemical acceleration,” says Dickinson. “Underground posts rust, too, but not as fast as at ground level. My post-setting method adds years to the life of a metal pipe corral.”

Jared Laca uses an old upright freezer to dry forage samples. Because the Fallon, Nevada, dairy farmer pays for his forage based on dry matter, he needs to dry and weigh it. The $120 electric dryer he previously purchased would only do two samples at a time.

“I had this old freezer,” Laca says. “It took $85 in parts to turn an old freezer into a dryer, using instructions I found on the internet.”

Laca installed two 3-in. vents at the bottom of the freezer and cut a hole for a bathroom fan at the top. He wired five porcelain lights with splitters (10 100-watt bulbs) in parallel and connected them to a switch. Though the dryer heats up to 120 to 130 degrees, the temperature isn’t the crucial part.

“It’s the air movement that’s pulled in from the bottom vents by the bathroom fan,” Laca says. “The fan never stops.”

He weighs out 100-gram samples on 40 paper plates and places them on the freezer racks. After two days he removes and weights each plate to determine the dry matter.

In this case, Jared Laca is actually using a freezer to dry forage. It’s a rather clever and cost-effective solution for someone who needs to dry small quantities of forage, as dairy farmers often do.

The freezer is essentially a dehydrator. It heats the air inside, allowing the moisture in the forage to evaporate. The dry matter is then weighed to determine its moisture content. This method is particularly useful for small-scale operations where the cost of a traditional dehydrator wouldn’t be justified.

To prepare the forage, Laca would put small quantities of it into the freezer and let it dry. He would constantly monitor the temperature and humidity to ensure a consistent drying process. Once the forage reached the desired moisture level, he would remove it and weigh it to determine its dry matter.

This is a practical and efficient use of a common household appliance, demonstrating how farmers can creatively adapt to their needs and circumstances.