Hydraulic hoses run from the pump to the motor.

“I bought the pulley new and spent about $25 on belts. I already had the Charlin hydraulic motor. My total cost was only about $75. Now I can steer the tractor with just one finger, even with a load on it.”

W.A. Gibbas, Elsmoor, Tenn.: “I built this simple but easy-to-use puller using a 6-ton hydraulic jack. It’s amazingly handy to use.

“It consists of two 3/8-in. dia. all-thread bolts, which serve as spacers, connected together by a 1-ft. length of 3/8-in. thick flat stock. The all-thread bolts are bolted to a bearing separator. I used the system recently to remove a worn-out sealed bearing on a lawn mower deck. I turned the deck upside down, then clamped the bearing separator to the bearing housing and placed the jack on top of the deck’s shaft. To remove the bearing, I simply raise the jack to apply hydraulic pressure and push the shaft out.

“I also made a pair of long spacer arms that I use with the same setup. I frequently used them to remove a hydraulic pump from my bull dozer when I had to rebuild the automatic transmission on it. The pump was down inside the transmission case and there was no way to get down in there and get hold of two bolts that keep the pump in place. I bolted the spacer arms to the pump. Then I placed a piece of wood across the top of the transmission case and set the jack on top of it.”

Curtis Heinen, C&D Developments, Box 269, Craik, Sask., Canada S0G 0V0 (ph 306 734-2728): “Our new Grease Saver is an easy-to-use grease gun attachment that holds any standard grease needle firmly in place, making it easy to lubricate bearings. It consists of a specially designed sleeve that fits over a standard needle. You insert the needle into the grease gun fitting, slide the sleeve over the needle, and then use an Allen screw on the sleeve to lock the needle in place. The easy-lock design prevents grease from pushing past the fitting so the grease gets to your bearings, not on your hands. The needle can be held in place with grease from pushing past the fitting so the Allen screw on the sleeve to lock the needle in place over the output shaft. This enables a large tractor to run at less than full engine speed while operating the 540 machine at full rpm’s.”

“The speed reducer uses a double chain coupler on the input shaft to simplify the alignment. Input couplers are available in either 1 3/4 or 1 3/8-in. dia. splines. The output shaft is 1 3/8-in. diameter.

“The gearbox is a high horsepower unit that weighs 195 lbs. so it needs to be rigidly mounted to the tractor. To simplify mounting, the gearbox is supplied with an attached steel base plate that can be drilled or welded as needed. The gearbox can also be special ordered for use as a speed increaser. Sells for $1,800 (Canadian) plus S&H.”

Smith Tool, 2505 S. Custer, Wichita, Kansas 67212 (ph 316 942-8632; fax 316 942-7738; Website: www.smithtool.info): “Our new two-in-one Rivet Tool is designed to remove and replace both standard round-head and countersunk rivets. It allows you to replace sickle sections right on the machine. At two-way reversible anvil insert allows the tool to replace both types of rivets quickly and easily. The unit comes with a variety of parts including riveter screw, riveter sleeve, anvil, punch sleeve, and punch.”

“It’s the ideal tool for anyone who has several machines with varying sickle section fasteners. The narrow body design fits all sickles including new double tooth sections. The tool comes complete with all parts and instructions.

“Sells for $69.42 plus S&H.”

David Conlee packed his entire shop into a 66-passenger school bus that he can take anywhere.

One of the worst things about not living where you farm is not having easy and quick access to a good farm shop, says David Conlee, Moro, Ore., who farms rented land spread out across 25 miles.

He eliminated the problem by packing his entire shop into a 66-passenger school bus that he can take anywhere.

Behind the driver’s seat down the right side of the bus, there’s a valve grinder and a glass bead machine that he uses to clean and polish parts. Next are four big rollaway toolboxes full of hand tools. Beyond the toolboxes is a 25-ton hydraulic press that’s powered by a hand pump. Toward the rear of the bus, he mounted a set of oxygen and acetylene tanks and hoses, with an anvil right in front of them. Finally, in the back corner next to the anvil and gas welder is a welding table.

Across the aisle from the welding table, Conlee mounted a combination 9-kW generator and 350-amp electric welder, powered by a gasoline engine that’s vented out the side of the bus. He mounted the generator/welder up high in the back corner to make space underneath it for a 210-amp wire welder.

“The rear emergency door gives me easy access to the welding area,” he says. And anything that he can’t lift through the door, he can pick up only about through with a hand-cranked cherry picker mounted on the rear bumper. “It was built to go on a service truck, but I modified it slightly to make it fit and work the way I wanted it to,” he says.

Next to the generator, he installed a power panel and a power inverter from an old recreational vehicle. “If I have access to a 220-volt outlet, I can plug in the entire bus and run my tools off that, rather than the generator. The inverter keeps the batteries charged up while we’re plugged in,” he says.

Moving forward from the welder, there’s a 2 hp grinder on a pedestal and then a floor model drill press. In front of these, located right over the wheel well, is a 5-hp electric-powered air compressor with a 20-gal. horizontal tank.

“This particular bus has an emergency door on left hand side, too. In front of the compressor, just behind the emergency door, is my metal band saw. If I have to, I can swing the saw around and run the stock I’m cutting out through the door,” he says.

Ahead of the lathe/mill, there’s a 25-ton hydraulic press that’s powered by a gasoline engine that’s vented out the side of the bus. He mounted the generator/welder up high in the back corner to make space underneath it for a 210-amp wire welder.

“The rear emergency door gives me easy access to the welding area,” he says. And anything that he can’t lift through the door, he can pick up only about through with a hand-cranked cherry picker mounted on the rear bumper. “It was built to go on a service truck, but I modified it slightly to make it fit and work the way I wanted it to,” he says.

Next to the generator, he installed a power panel and a power inverter from an old recreational vehicle. “If I have access to a 220-volt outlet, I can plug in the entire bus and run my tools off that, rather than the generator. The inverter keeps the batteries charged up while we’re plugged in,” he says.

Moving forward from the welder, there’s a 2 hp grinder on a pedestal and then a floor model drill press. In front of these, located right over the wheel well, is a 5-hp electric-powered air compressor with a 20-gal. horizontal tank.

“This particular bus has an emergency door on left hand side, too. In front of the compressor, just behind the emergency door, is my metal band saw. If I have to, I can swing the saw around and run the stock I’m cutting out through the door,” he says.

Ahead of the lathe/mill, there’s a 25-ton hydraulic press that’s powered by a gasoline engine that’s vented out the side of the bus. He mounted the generator/welder up high in the back corner to make space underneath it for a 210-amp wire welder.

“The rear emergency door gives me easy access to the welding area,” he says. And anything that he can’t lift through the door, he can pick up only about through with a hand-cranked cherry picker mounted on the rear bumper. “It was built to go on a service truck, but I modified it slightly to make it fit and work the way I wanted it to,” he says.

Next to the generator, he installed a power panel and a power inverter from an old recreational vehicle. “If I have access to a 220-volt outlet, I can plug in the entire bus and run my tools off that, rather than the generator. The inverter keeps the batteries charged up while we’re plugged in,” he says.

Moving forward from the welder, there’s a 2 hp grinder on a pedestal and then a floor model drill press. In front of these, located right over the wheel well, is a 5-hp electric-powered air compressor with a 20-gal. horizontal tank.

“This particular bus has an emergency door on left hand side, too. In front of the compressor, just behind the emergency door, is my metal band saw. If I have to, I can swing the saw around and run the stock I’m cutting out through the door,” he says.

Ahead of the lathe/mill, there’s a 25-ton hydraulic press that’s powered by a gasoline engine that’s vented out the side of the bus. He mounted the generator/welder up high in the back corner to make space underneath it for a 210-amp wire welder.

“The rear emergency door gives me easy access to the welding area,” he says. And anything that he can’t lift through the door, he can pick up only about through with a hand-cranked cherry picker mounted on the rear bumper. “It was built to go on a service truck, but I modified it slightly to make it fit and work the way I wanted it to,” he says.

Next to the generator, he installed a power panel and a power inverter from an old recreational vehicle. “If I have access to a 220-volt outlet, I can plug in the entire bus and run my tools off that, rather than the generator. The inverter keeps the batteries charged up while we’re plugged in,” he says.

Moving forward from the welder, there’s a 2 hp grinder on a pedestal and then a floor model drill press. In front of these, located right over the wheel well, is a 5-hp electric-powered air compressor with a 20-gal. horizontal tank.

“This particular bus has an emergency door on left hand side, too. In front of the compressor, just behind the emergency door, is my metal band saw. If I have to, I can swing the saw around and run the stock I’m cutting out through the door,” he says.